CS 188: Artificial Intelligence

Bayes' Nets
Representation and Independence

Pieter Abbeel - UC Berkeley
Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

Probability recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule $\quad P(x, y)=P(x \mid y) P(y)$
- Chain rule $P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right)$..

$$
=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

- X, Y independent iff: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z iff:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \quad X \Perp Y \mid Z
$$

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box
- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly. For n variables with domain size d, joint table has d^{n} entries --- exponential in n .
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

Bayes' Nets

- Representation
- Informal first introduction of Bayes' nets through causality "intuition"
- More formal introduction of Bayes' nets
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Similar to CSP constraints
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more later)
- For now: imagine that arrows
 mean direct causation (in general, they don't!)

Example: Coin Flips

- N independent coin flips

x_{2}
. .
X_{n}
- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic
- Model 1: independence

- Model 2: rain causes traffic
- Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model
- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

$P\left(X \mid A_{1} \ldots A_{n}\right)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Example:
$P(+$ cavity, +catch, \neg toothache $)$
- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

$$
P(h, h, t, h)=
$$

Example: Traffic

$$
P(+r, \neg t)=
$$

Example: Alarm Network

Example Bayes' Net: Insurance

Build your own Bayes nets!

- http://www.aispace.org/bayes/index.shtml

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables? 2^{N}
- How big is an N-node net if nodes have up to k parents?
$\mathrm{O}\left(\mathrm{N}^{*} 2^{\mathrm{k}+1}\right)$
- Both give you the power to calculate $P\left(X_{1}, X_{2}, \ldots X_{n}\right)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)

Bayes' Nets

- Representation

Informal first introduction of Bayes' nets through causality "intuition"

- More formal introduction of Bayes' nets
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Representing Joint Probability Distributions

- Table representation:
number of parameters: $\quad d^{\mathrm{n}}-1$
- Chain rule representation:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
$$

number of parameters: $(\mathrm{d}-1)+\mathrm{d}(\mathrm{d}-1)+\mathrm{d}^{2}(\mathrm{~d}-1)+\ldots+\mathrm{d}^{\mathrm{n}-1}(\mathrm{~d}-1)=\mathrm{d}^{\mathrm{n}}-1$

Size of CPT = (number of different joint instantiations of the preceding variables) times (number of values current variable can take on minus 1)

- Both can represent any distribution over the n random variables. Makes sense same number of parameters needs to be stored.
- Chain rule applies to all orderings of the variables, so for a given distribution we can represent it in $n!=n$ factorial $=n(n-1)(n-2) \ldots 2.1{ }^{23}$ different ways with the chain rule

Chain Rule \rightarrow Bayes' net

- Chain rule representation: applies to ALL distributions
- Pick any ordering of variables, rename accordingly as $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
$$

number of parameters: $(\mathrm{d}-1)+\mathrm{d}(\mathrm{d}-1)+\mathrm{d}^{2}(\mathrm{~d}-1)+\ldots+\mathrm{d}^{\mathrm{n}-1}(\mathrm{~d}-1)=\mathrm{d}^{\mathrm{n}}-1$

- Bayes' net representation: makes assumptions
- Pick any ordering of variables, rename accordingly as $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
- Pick any directed acyclic graph consistent with the ordering
- Assume following conditional independencies:

$$
P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

\rightarrow Joint: $P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$ number of parameters: (maximum number of parents $=\mathrm{K}$)

$$
\begin{array}{r}
\sum_{i=1}^{n} d^{\left|\operatorname{parents}\left(X_{i}\right)\right|}(d-1)=O\left(n d^{K}(d-1)\right)=O\left(n d^{K+1}\right) \\
\text { Note: no causality assumption made anywhere. }
\end{array}
$$

Causality?

- When Bayes’ nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology only guaranteed to encode conditional independence

Example: Traffic

- Basic traffic net
- Let's multiply out the joint
T
$P(T \mid R)$

r	t	$3 / 4$
	$\neg \mathrm{t}$	$1 / 4$
$\neg \mathrm{r}$	t	$1 / 2$
	$\neg \mathrm{t}$	$1 / 2$

$P(T, R)$

r	t	$3 / 16$
r	$\neg t$	$1 / 16$
$\neg r$	t	$6 / 16$
$\neg r$	$\neg t$	$6 / 16$

Example: Reverse Traffic

- Reverse causality?

$P(T, R)$

r	t	$3 / 16$
r	$\neg t$	$1 / 16$
$\neg r$	t	$6 / 16$
$\neg r$	$\neg t$	$6 / 16$

Example: Coins

- Extra arcs don't prevent representing independence, just allow non-independence

$P\left(X_{1}\right)$
h
t

$P\left(X_{2}\right)$

h	0.5
t	0.5

$P\left(X_{1}\right)$
h
t

$P\left(X_{2} \mid X_{1}\right)$

$\mathrm{h} \mid \mathrm{h}$	0.5
$\mathrm{t} \mid \mathrm{h}$	0.5

- Adding unneeded arcs isn't

$\mathrm{h} \mid \mathrm{t}$	0.5
$\mathrm{t} \mid \mathrm{t}$	0.5

Bayes' Nets

- Representation

Informal first introduction of Bayes' nets through causality "intuition"

* More formal introduction of Bayes' nets
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Bayes Nets: Assumptions

- To go from chain rule to Bayes' net representation, we made the following assumption about the distribution:

$$
P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Turns out that probability distributions that satisfy the above ("chain-rule \rightarrow Bayes net") conditional independence assumptions
- often can be guaranteed to have many more conditional independences
- These guaranteed additional conditional independences can be read off directly from the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Example

- Conditional independence assumptions directly from simplifications in chain rule:
- Additional implied conditional independence assumptions?

Independence in a BN

- Given a Bayes net graph
- Important question:

Are two nodes guaranteed to be independent given certain evidence?

Equivalent question:
Are two nodes independent given the evidence in all distributions that can be encoded with the Bayes net graph?

- Before proceeding: How about opposite question: Are two nodes guaranteed to be dependent given certain evidence?
- No! For any BN graph you can choose all CPT's such that all variables are independent by having $\mathrm{P}(\mathrm{X} \mid \mathrm{Pa}(\mathrm{X})=\mathrm{paX})$ not depend on the value of the parents. Simple way of doing so: pick all entries in all CPTs equal to 0.5 (assumina binary variables)

Independence in a BN

- Given a Bayes net graph

Are two nodes guaranteed to be independent given certain evidence?

- If no, can prove with a counter example
- I.e., pick a distribution that can be encoded with the BN graph, i.e., pick a set of CPT's, and show that the independence assumption is violated
- If yes,
- For now we are able to prove using algebra (tedious in general)
- Next we will study an efficient graph-based method to prove yes: "D-separation"

D-separation: Outline

- Study independence properties for triples
- Any complex example can be analyzed by considering relevant triples

Causal Chains

- This configuration is a "causal chain"

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y) \quad \begin{aligned}
& \text { Y: Low pressure } \\
& \text { Y: Rain } \\
& \text { Z: Traffic }
\end{aligned}
$$

- Is it guaranteed that X is independent of Z ? No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example: $P(y \mid x)=1$ if $y=x, 0$ otherwise
$P(z \mid y)=1$ if $z=y, 0$ otherwise
Then we have $P(z \mid x)=1$ if $z=x, 0$ otherwise hence X and Z are not independent in this example

Causal Chains

- This configuration is a "causal chain"

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y) \quad \begin{aligned}
& \text { X: Low pressure } \\
& \text { Y: Rain } \\
& \text { Z: Traffic }
\end{aligned}
$$

- Is it guaranteed that X is independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y) \quad \text { Yes! }
\end{aligned}
$$

- Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
- Is it guaranteed that X and Z are independent?
- No!
- Counterexample:

Choose $P(X \mid Y)=1$ if $x=y, 0$ otherwise,

Y: Project due
X: Piazza busy
Z: Lab full Choose $\mathrm{P}(\mathrm{z} \mid \mathrm{y})=1$ if $\mathrm{z}=\mathrm{y}, 0$ otherwise. Then $P(x \mid z)=1$ if $x=z$ and 0 otherwise, hence X and Z are not independent in this example and hence it is not guaranteed that if a distribution can be encoded with the Bayes' net structure on the right that X and Z are independent in that distribution

Common Cause

- Another basic configuration: two effects of the same cause
- Is it guaranteed that X and Z are independent given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \\
& =P(z \mid y) \text { Yes! }
\end{aligned}
$$

Y: Project due
X: Piazza busy
Z: Lab full

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
- Are X and Z independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)

- Are X and Z independent given Y ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation?

X: Raining
Z: Ballgame

- This is backwards from the other cases

Y: Traffic

- Observing an effect activates influence between possible causes.

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars $\{Z\}$?
- Yes, if X and Y "separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendent is observed
- All it takes to block a path is a single inactive segment

Active Triples

Inactive Triples

D-Separation

- Given query X_{i} 且 $X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$
- Shade all evidence nodes
- For all (undirected!) paths between and
- Check whether path is active
- If active return:
not guaranteed that $\quad X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$
- (If reaching this point all paths have been checked and shown inactive)
- Return: guaranteed tat $X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n 4}}\right\}$

Example

$R \Perp B$
Yes
$R \Perp B \mid T$
$R \Perp B \mid T^{\prime}$

Example

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I' m sad
- Questions:
$T \Perp D$

$T \Perp D \mid R \quad$ Yes
$T \Perp D \mid R, S$

All Conditional Independences

- Given a Bayes net structure, can run dseparation to build a complete list of conditional independences that are guaranteed to be true, all of the form

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

Possible to have same full list of conditional independencies for different BN graphs?

- Yes!
- Examples:
- If two Bayes' Net graphs have the same full list of conditional independencies then they are able to encode the same set of distributions.

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

Representation
Conditional Independences

- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Probabilistic inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

