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CS 188: Artificial Intelligence 
 

Bayes’ Nets 
Representation and Independence 

Pieter Abbeel – UC Berkeley 

Many slides over this course adapted from Dan Klein, Stuart Russell, 
Andrew Moore 

Probability recap 

§  Conditional probability 

§  Product rule 

§  Chain rule  
 
 
 

§  X, Y independent iff: 

§  X and Y are conditionally independent given Z iff: 
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Probabilistic Models 
§  Models describe how (a portion of) the world works 

§  Models are always simplifications 
§  May not account for every variable 
§  May not account for all interactions between variables 
§  “All models are wrong; but some are useful.” 

     – George E. P. Box 

§  What do we do with probabilistic models? 
§  We (or our agents) need to reason about unknown variables, 

given evidence 
§  Example: explanation (diagnostic reasoning) 
§  Example: prediction (causal reasoning) 
§  Example: value of information 
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Bayes’ Nets: Big Picture 
§  Two problems with using full joint distribution tables as 

our probabilistic models: 
§  Unless there are only a few variables, the joint is WAY too big to 

represent explicitly.  For n variables with domain size d, joint 
table has dn entries --- exponential in n. 

§  Hard to learn (estimate) anything empirically about more than a 
few variables at a time 

§  Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities) 
§  More properly called graphical models 
§  We describe how variables locally interact 
§  Local interactions chain together to give global, indirect 

interactions 
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Bayes’ Nets 

§  Representation 
§  Informal first introduction of Bayes’ nets 

through causality “intuition” 
§ More formal introduction of Bayes’ nets 

§  Conditional Independences 

§  Probabilistic Inference 

§  Learning Bayes’ Nets from Data 5 

Graphical Model Notation 

§  Nodes: variables (with domains) 
§  Can be assigned (observed) or 

unassigned (unobserved) 

§  Arcs: interactions 
§  Similar to CSP constraints 
§  Indicate “direct influence” between 

variables 
§  Formally: encode conditional 

independence (more later) 

§  For now: imagine that arrows 
mean direct causation (in 
general, they don’t!) 
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Example: Coin Flips 

X1 X2 Xn 

§  N independent coin flips 

§  No interactions between variables: 
absolute independence 
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Example: Traffic 

§  Variables: 
§  R: It rains 
§  T: There is traffic 

§  Model 1: independence 

§  Model 2: rain causes traffic 

§  Why is an agent using model 2 better? 

R 

T 
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Example: Traffic II 

§  Let’s build a causal graphical model 

§  Variables 
§  T: Traffic 
§  R: It rains 
§  L: Low pressure 
§  D: Roof drips 
§  B: Ballgame 
§  C: Cavity 
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Example: Alarm Network 

§  Variables 
§  B: Burglary 
§  A: Alarm goes off 
§ M: Mary calls 
§  J: John calls 
§  E: Earthquake! 

10 
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Bayes’ Net Semantics 
§  Let’s formalize the semantics of a 

Bayes’ net 

§  A set of nodes, one per variable X 
§  A directed, acyclic graph 
§  A conditional distribution for each node 

§  A collection of distributions over X, one for 
each combination of parents’ values 

§  CPT: conditional probability table 
§  Description of a noisy “causal” process 

A1 

X 

An 

A Bayes net = Topology (graph) + Local Conditional Probabilities 
11 

Probabilities in BNs 
§  Bayes’ nets implicitly encode joint distributions 

§  As a product of local conditional distributions 
§  To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together: 

§  Example: 

§  This lets us reconstruct any entry of the full joint 
§  Not every BN can represent every joint distribution 

§  The topology enforces certain conditional independencies 
12 
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Example: Coin Flips 

h 0.5 
t 0.5 

h 0.5 
t 0.5 

h 0.5 
t 0.5 

X1 X2 Xn 

Only distributions whose variables are absolutely independent 
can be represented by a Bayes’ net with no arcs. 13 

Example: Traffic 

R 

T 

  +r 1/4 
¬r 3/4 

 +r   +t 3/4 
¬t 1/4 

¬r   +t 1/2 
¬t 1/2 

14 
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Example: Alarm Network 

Burglary Earthqk 

Alarm 

John 
calls 

Mary 
calls 

B P(B) 

+b 0.001 

¬b 0.999 

E P(E) 

+e 0.002 

¬e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 
+b +e ¬a 0.05 
+b ¬e +a 0.94 
+b ¬e ¬a 0.06 
¬b +e +a 0.29 
¬b +e ¬a 0.71 
¬b ¬e +a 0.001 
¬b ¬e ¬a 0.999 

A J P(J|A) 
+a +j 0.9 
+a ¬j 0.1 
¬a +j 0.05 
¬a ¬j 0.95 

A M P(M|A) 
+a +m 0.7 
+a ¬m 0.3 
¬a +m 0.01 
¬a ¬m 0.99 

Example Bayes’ Net: Insurance 

16 



9 

Example Bayes’ Net: Car 
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Build your own Bayes nets! 

§  http://www.aispace.org/bayes/index.shtml 
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Size of a Bayes’ Net 
§  How big is a joint distribution over N Boolean variables? 

2N 

§  How big is an N-node net if nodes have up to k parents? 

O(N * 2k+1) 
 
§  Both give you the power to calculate 
§  BNs: Huge space savings! 
§  Also easier to elicit local CPTs 
§  Also turns out to be faster to answer queries (coming) 

21 

Bayes’ Nets 

§  Representation 
§  Informal first introduction of Bayes’ nets 

through causality “intuition” 
§ More formal introduction of Bayes’ nets 

§  Conditional Independences 

§  Probabilistic Inference 

§  Learning Bayes’ Nets from Data 22 
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Representing Joint Probability 
Distributions 

§  Table representation: 

number of parameters:  dn-1 

§  Chain rule representation: 
 
 
      number of parameters: (d-1) + d(d-1) + d2(d-1)+…+dn-1(d-1) =  dn-1 

 
Size of CPT = (number of different joint instantiations of the preceding variables) 
times (number of values current variable can take on minus 1) 

§  Both can represent any distribution over the n random variables. 
Makes sense same number of parameters needs to be stored. 

§  Chain rule applies to all orderings of the variables, so for a given 
distribution we can represent it in n! = n factorial = n(n-1)(n-2)…2.1 
different ways with the chain rule 

23 

Chain Rule à Bayes’ net 
§  Chain rule representation: applies to ALL distributions 

§  Pick any ordering of variables, rename accordingly as x1, x2, …, xn 
 
 
      number of parameters: (d-1) + d(d-1) + d2(d-1)+…+dn-1(d-1) =  dn-1 

 

§  Bayes’ net representation: makes assumptions 
§  Pick any ordering of variables, rename accordingly as x1, x2, …, xn 

§  Pick any directed acyclic graph consistent with the ordering 
§  Assume following conditional independencies: 

à Joint: 

  number of parameters: (maximum number of parents = K) 
 
 
 

    Note: no causality assumption made anywhere. 

24 

P (xi|x1 · · ·xi−1) = P (xi|parents(Xi))

Exponential 
in n 

Linear 
in n 
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Causality? 
§  When Bayes’ nets reflect the true causal patterns: 

§  Often simpler (nodes have fewer parents) 
§  Often easier to think about 
§  Often easier to elicit from experts 

§  BNs need not actually be causal 
§  Sometimes no causal net exists over the domain 
§  E.g. consider the variables Traffic and Drips 
§  End up with arrows that reflect correlation, not causation 

§  What do the arrows really mean? 
§  Topology may happen to encode causal structure 
§  Topology only guaranteed to encode conditional independence 
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Example: Traffic 

§  Basic traffic net 
§  Let’s multiply out the joint 

R 

T 

   r 1/4 
¬r 3/4 

 r    t 3/4 
¬t 1/4 

¬r    t 1/2 
¬t 1/2 

   r    t 3/16 
   r ¬t 1/16 
¬r    t 6/16 
¬r ¬t 6/16 

26 
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Example: Reverse Traffic 

§  Reverse causality? 

T 

R 

   t 9/16 
¬t 7/16 

 t    r 1/3 
¬r 2/3 

¬t    r 1/7 
¬r 6/7 

   r    t 3/16 
   r ¬t 1/16 
¬r    t 6/16 
¬r ¬t 6/16 

27 

Example: Coins 

§  Extra arcs don’t prevent representing 
independence, just allow non-independence 

h 0.5 
t 0.5 

h 0.5 
t 0.5 

X1 X2 

h 0.5 
t 0.5 

h | h 0.5 
t | h 0.5 

X1 X2 

h | t 0.5 
t | t 0.5 

28 

§  Adding unneeded arcs isn’t 
wrong, it’s just inefficient 
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Bayes’ Nets 

§  Representation 
§  Informal first introduction of Bayes’ nets 

through causality “intuition” 
§ More formal introduction of Bayes’ nets 

§  Conditional Independences 

§  Probabilistic Inference 

§  Learning Bayes’ Nets from Data 29 

Bayes Nets: Assumptions 
§  To go from chain rule to Bayes’ net representation, we 

made the following assumption about the distribution: 

§  Turns out that probability distributions that satisfy the above 
(“chain-ruleàBayes net”) conditional independence 
assumptions  
§  often can be guaranteed to have many more conditional 

independences 
§  These guaranteed additional conditional independences can be 

read off directly from the graph 

§  Important for modeling: understand assumptions made 
when choosing a Bayes net graph 

30 

P (xi|x1 · · ·xi−1) = P (xi|parents(Xi))
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Example 

§  Conditional independence assumptions directly from 
simplifications in chain rule: 

§  Additional implied conditional independence 
assumptions? 

31 

X Y Z W 

Independence in a BN 
§  Given a Bayes net graph 

§  Important question:  
 Are two nodes guaranteed to be independent given 
 certain evidence? 

 

Equivalent question: 
 

 Are two nodes independent given the evidence in all 
 distributions that can be encoded with the Bayes 
 net graph? 

 

§  Before proceeding: How about opposite question: Are 
two nodes guaranteed to be dependent given certain 
evidence? 
§  No!  For any BN graph you can choose all CPT’s such that all 

variables are independent by having P(X | Pa(X) = paX) not 
depend on the value of the parents.  Simple way of doing so: pick 
all entries in all CPTs equal to 0.5 (assuming binary variables) 
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Independence in a BN 
§  Given a Bayes net graph 

 Are two nodes guaranteed to be 
 independent given certain evidence? 
  

§  If no, can prove with a counter example 
§  I.e., pick a distribution that can be encoded with 

the BN graph, i.e., pick a set of CPT’s, and show 
that the independence assumption is violated 

§  If yes,  
§ For now we are able to prove using algebra 

(tedious in general) 
§ Next we will study an efficient graph-based 

method to prove yes: “D-separation” 

D-separation: Outline 

§  Study independence properties for triples 

§  Any complex example can be analyzed by 
considering relevant triples 

 

34 
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Causal Chains 
§  This configuration is a “causal chain” 

§  Is it guaranteed that X is independent of Z ?   No! 

§  One example set of CPTs for which X is not independent of Z is 
sufficient to show this independence is not guaranteed. 

§  Example: P(y|x) = 1  if y=x, 0 otherwise 
        P(z|y) = 1  if z=y, 0 otherwise 
   Then we have P(z|x) = 1  if z=x, 0 otherwise 
    hence X and Z are not independent in this example  

 

X Y Z 
X: Low pressure 

Y: Rain 

Z: Traffic 

35 

Causal Chains 
§  This configuration is a “causal chain” 

§  Is it guaranteed that X is independent of Z given Y? 

§  Evidence along the chain “blocks” the influence 

X Y Z 

Yes! 

X: Low pressure 

Y: Rain 

Z: Traffic 

36 
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Common Cause 

§  Another basic configuration: two 
effects of the same cause 

§  Is it guaranteed that X and Z are 
independent? 
§  No! 

§  Counterexample:  
Choose P(X|Y)=1 if x=y, 0 otherwise,  
Choose P(z|y) = 1 if z=y, 0 otherwise.   
Then P(x|z)=1 if x=z and 0 otherwise, hence X 
and Z are not independent in this example and 
hence it is not guaranteed that if a distribution can 
be encoded with the Bayes’ net structure on the 
right that X and Z are independent in that 
distribution 

X 

Y 

Z 

Y: Project due 

X: Piazza busy 

Z: Lab full 
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Common Cause 

§  Another basic configuration: two 
effects of the same cause 

§  Is it guaranteed that X and Z are 
independent given Y? 

§  Observing the cause blocks influence 
between effects. 

X 

Y 

Z 

Yes! 

Y: Project due 

X: Piazza busy 

Z: Lab full 

38 
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Common Effect 

§  Last configuration: two causes of 
one effect (v-structures) 
§  Are X and Z independent? 

§  Yes: the ballgame and the rain cause traffic, 
but they are not correlated 

§  Still need to prove they must be (try it!) 

§  Are X and Z independent given Y? 
§  No: seeing traffic puts the rain and the 

ballgame in competition as explanation? 

§  This is backwards from the other cases 
§  Observing an effect activates influence 

between possible causes. 

X 

Y 

Z 

X: Raining 

Z: Ballgame 

Y: Traffic 

39 

Reachability (D-Separation) 
§  Question: Are X and Y 

conditionally independent 
given evidence vars {Z}? 
§  Yes, if X and Y “separated” by Z 
§  Consider all (undirected) paths 

from X to Y 

§  No active paths = independence! 

§  A path is active if each triple 
is active: 
§  Causal chain A → B → C where B 

is unobserved (either direction) 
§  Common cause A ← B → C 

where B is unobserved 
§  Common effect (aka v-structure) 

 A → B ← C where B or one of its 
descendents is observed 
  

§  All it takes to block a path is 
a single inactive segment 
 

  

Active Triples Inactive Triples 
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D-Separation 

§  Given query          
§  Shade all evidence nodes 
§  For all (undirected!) paths between and  

§ Check whether path is active 
§  If active return:  
    not guaranteed that 
 

§  (If reaching this point all paths have been 
checked and shown inactive) 
§  Return: guaranteed tat  

41 

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

? 

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Example 

Yes 

42 

R 

T 

B 

T’ 
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Example 

R 

T 

B 

D 

L 

T’ 

Yes 

Yes 

Yes 

43 

Example 

§  Variables: 
§ R: Raining 
§  T: Traffic 
§ D: Roof drips 
§  S: I’m sad 

§  Questions: 

T 

S 

D 

R 

Yes 

44 
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All Conditional Independences 

§  Given a Bayes net structure, can run d-
separation to build a complete list of 
conditional independences that are 
guaranteed to be true, all of the form 

 45 

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Possible to have same full list of conditional 
independencies for different BN graphs? 

§  Yes! 
§  Examples: 

§  If two Bayes’ Net graphs have the same full list 
of conditional independencies then they are able 
to encode the same set of distributions. 46 
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Topology Limits Distributions 
§  Given some graph 

topology G, only certain 
joint distributions can 
be encoded 

§  The graph structure 
guarantees certain 
(conditional) 
independences 

§  (There might be more 
independence) 

§  Adding arcs increases 
the set of distributions, 
but has several costs 

§  Full conditioning can 
encode any distribution 

X 

Y 

Z 

X 

Y 

Z 

X 
Y 

Z 
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X 

Y 

Z X 

Y 

Z 

X 

Y 

Z X 

Y 

Z X 

Y 

Z 

X 

Y 

Z 

X 

Y 

Z 

Bayes Nets Representation Summary 

§  Bayes nets compactly encode joint distributions 

§  Guaranteed independencies of distributions can 
be deduced from BN graph structure 

§  D-separation gives precise conditional 
independence guarantees from graph alone 

§  A Bayes’ net’s joint distribution may have 
further (conditional) independence that is not 
detectable until you inspect its specific 
distribution 49 
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Bayes’ Nets 

§  Representation 
§  Conditional Independences 
§  Probabilistic Inference 

§  Enumeration (exact, exponential complexity) 
§  Variable elimination (exact, worst-case 

exponential complexity, often better) 
§  Probabilistic inference is NP-complete 
§  Sampling (approximate) 

§  Learning Bayes’ Nets from Data 53 


